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Transonic high-Reynolds-number flows through channels which are so narrow that
the classical boundary-layer approach fails locally are considered in the presence of
a weak stationary normal shock. As a consequence, the properties of the inviscid
core and the viscosity-dominated boundary-layer region can no longer be determined
in subsequent steps but have to be calculated simultaneously in a small interaction
region. Under the requirement that the core-region flow should be considered to
be one-dimensional to the leading order the resulting problem of shock–boundary-
layer interaction is formulated by the means of matched asymptotic expansions for
laminar flows of dense gases (Bethe–Zel’dovich–Thompson, or BZT, fluids). Such
fluids have the distinguishing feature that the fundamental derivative of gas dynamics
can become negative or even change sign under the thermodynamic conditions
to be considered. The regularizing properties of the mechanism of viscous–inviscid
interactions on the different anomalous shock forms possible in the flow of dense gases
with mixed nonlinearity, namely rarefaction, sonic, double-sonic and split shocks, will
be discussed. To this end we show the consistency of the resulting internal-shock
profiles because of strong shock–boundary-layer interaction with a generalized shock
admissibility criterion formulated for the case of purely inviscid flows. Representative
solutions for the internal-shock structures are presented, and the importance of such
flow phenomena in technical applications in the near future are shortly discussed
by considering estimates of the actual dimensions of the interaction region for a
specific representative situation in which the BZT fluid PP10 (C13F22) has been
selected.

1. Introduction
After an era of vivid interest in dense gases that are also known as Bethe–

Zel’dovich–Thompson (BZT) fluids, starting with the works of Bethe (1942),
Zel’dovich (1946) and Thompson (1971) and lasting until the middle of 1990s (cf.
amongst others Thompson & Lambrakis 1973; Cramer & Kluwick 1984; Cramer &
Sen 1986; Thompson et al. 1987; Cramer 1989; Chandrasekar & Prasad 1991;
Cramer & Crickenberger 1991; Kluwick 1993, 1994; Kluwick & Scheichl 1996), there
has been a renewed interest in these kind of fluids as can be observed by the number
of more recent publications dealing with the experimental prediction and detection of
anomalous shocks inherent to these kind of fluids (Fergason et al. 2001; Colonna &
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Figure 1. (a) Pressure versus density diagram for a BZT fluid (PP10, according to the
Martin–Hou equation of state; cf. § 5.2). The subscript c indicates thermodynamic quantities
evaluated at the critical thermodynamical point TCP. (b) Close-up of the region of negative
Γ and subdivision in regions with the asymptotic properties: Γ ∼ 1, Γ � 0 (n=2); |Γ | � 1,
(∂Γ/∂ρ)s ∼ 1 (n= 3); and |Γ | � 1, |(∂Γ/∂ρ)s | � 1, (∂2Γ/∂ρ2)s ∼ 1 (n= 4).

Silva 2003; Guardone & Argrow 2005; Colonna & Guardone 2006; Zamfirescu,
Guardone & Colonna 2008), given their possible technical applications in thermal
turbomachinery (see e.g. Cinnella & Congedo 2007; Colonna, Guardone & Nannan
2007).

A distinguishing property of dense gases is that these exhibit thermodynamic
regions of negative or mixed nonlinearity in the single-phase state, by which is meant
that the so-called fundamental derivative

Γ =
1

c̃

∂(ρ̃c̃)

∂ρ̃

∣∣∣∣
s̃

(1.1)

takes on negative values or even changes sign in the flow field, respectively. This
feature, which, however, is restricted to a small region in the vicinity of the
thermodynamical critical point (cf. figure 1a), has severe consequences for the theory
of compressible inviscid flows, giving rise to a rich variety of anomalous shock forms
which are not possible in the common case of Γ being strictly positive, as there are
rarefaction, sonic, double-sonic and split shocks (cf. Kluwick 1993). Here c̃ is the
speed of sound,

c̃ =

√(
∂p̃

∂ρ̃

)
s̃

, (1.2)

and p̃, ρ̃ and s̃ are the pressure, the density and the entropy, respectively. Most
important of all, the classical criteria, such as the requirement that the thermodynamic
entropy has to increase over a shock following from the second law of thermodynamics
or the more mathematical condition for the stability of the resulting wave pattern
expressed by Lax’s characteristic criterion (Menikoff & Plohr 1989) or by the more
general Oleinik condition (Oleinik 1957; Kluwick, Scheichl & Cox 2007), are too
weak to rule out inadmissible shocks in case of fluids exhibiting mixed nonlinearity.
A shock is considered inadmissible in this context if there exists no internal-shock
profile connecting the flow conditions before and after the shock when physical
effects that have been neglected so far are taken into account and thus regularize
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Figure 2. Schematic representation of freely interacting channel flow: —, wave fronts; r,
boundary layers; Pw , wall pressure; PCL, pressure at channel centreline; M0, Mach number at
reference state; S, separation point. (a) Purely supersonic flow: M0 − 1 = O(1). (b) Transonic
flow: M0 − 1 � 1.

the problem. It is commonly known that the consideration of small effects of
viscosity and heat conduction in the vicinity of the shock front leads to such smooth
internal-shock profiles; for a thorough discussion of thermo-viscous regularization
for fluids exhibiting mixed nonlinearity, see e.g. Cramer & Kluwick (1984), Cramer &
Crickenberger (1991) or Kluwick (1993).

In the present paper quite a different mechanism for the regularization of weak
shocks is proposed, which is based on shock–boundary-layer interaction taking place
in transonic high-Reynolds-number flows through narrow channels. The situation to
be described here is closely related to the pseudo-shock phenomenon encountered
in internal gas flows (Matsuo, Miyazato & Kim 1999). A heuristic explanation for
the proclaimed regularizing influence of strong shock–boundary-layer interaction
is given in figure 2. Figure 2(a) is a sketch of the numerical results obtained by
Kluwick & Bodonyi (1979) for purely supersonic internal interacting flows. If the
governing equations for the core-region flow are linear (weak shocks), then an oblique
compression shock is reflected at the free edge of the boundary layer at the wall as a
rarefaction discontinuity (being the linear counterpart to a Prandtl–Meyer expansion
fan that forms if nonlinear effects are accounted for) and vice versa. Considering the
pressure distribution along the centreline of the channel one finds distinct pressure
oscillations but a net pressure rise over the length of the ‘shock train’. The pressure
distribution at the channel wall, however, is monotonously increasing as a result of the
shock–boundary-layer interaction exhibiting a plateau region where the compression
shock impinges on the boundary layer and is reflected as a rarefaction discontinuity.
If sonic flow conditions are approached (cf. figure 2b), that is to say taking the limit
M0 → 1+, the number of reflections per length is increasing, eventually leading to
the situation in which the flow in the core region becomes one-dimensional, and the
pressure distribution along the centreline and along the walls collapse, forming a
smooth pseudo-shock.

To be specific, the resulting shock–boundary-layer interaction problem shall be
formulated for transonic internal dense-gas flows by means of matched asymptotic
expansions exploiting the largeness of the Reynolds number and the asymptotic
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Figure 3. Schematic sketch of the problem set-up: region 1, inviscid core; region 2,
viscous non-interacting boundary layers; region 3, viscous–inviscid interaction.‘CL’ stands
for centreline.

properties of the fundamental derivative depicted in figure 1(b). To this end, consider
the situation of a stationary weak normal shock in a narrow channel depicted
in figure 3. Near the channel inlet viscous effects at high Reynolds numbers are
limited to thin layers adjacent to the channel walls, and in general, Prandtl’s classical
boundary-layer theory for laminar flow can be applied with good accuracy (except
for a tiny region near the leading edge, where the full Navier–Stokes equations apply
as in the case of external flows). However, rapid changes in the streamwise flow field,
such as evoked by a weak normal shock, lead to a local breakdown of the classical
boundary-layer approach (cf. Stewartson 1974 or Kluwick 1998, amongst others). As
a direct consequence, the properties of the inviscid core and the viscosity-dominated
boundary-layer regions can no longer be determined in subsequent steps but have
to be calculated simultaneously within an asymptotically small interaction region
around the shock depicted by region 3 in figure 3. The interaction problem can
be described consistently by a triple-deck problem (cf. Stewartson 1974), where the
inviscid interacting core region is represented by a single upper deck which is shared
by the two interacting boundary layers at the lower and upper channel walls. The
interacting boundary layer itself subdivides into an asymptotically thin lower deck
accounting for near-wall effects of viscosity and a passive main deck comprising the
main part of the interacting boundary layer. The channel shall be sufficiently narrow
so that the flow in the inviscid core becomes one-dimensional to the leading order. As
a consequence, the present work can be seen as an addition to the one-dimensional
weak normal shock theory for inviscid internal flows of dense gases through nozzles,
outlined in Kluwick (1993). The paper is dedicated to the discussion of stationary
internal-weak-shock profiles; however, for a discussion of the linear spatial stability of
distinguished trivial solutions to the problem we will rely on the unsteady formulation
of the viscous–inviscid interaction problem. Therefore, unsteady effects are included
into the mathematical derivation of the fundamental equations ab initio. A discussion
of transonic high-Reynolds-number flows through slender nozzles in general and the
conversion of subsonic to supersonic flow in particular, where the boundary-layer
correction can no longer be considered to be an effect of the higher order, will be
published in a forthcoming second part by the authors.

The paper at hand is structured as follows. Suitable reference states for the
various quantities imminent to the problem set-up and the governing equations in
dimensionless form are introduced in § 2, followed by a discussion of the magnitude
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of the various dimensionless groups entering the equations (§ 2.1). The asymptotic
analysis which eventually yields the fundamental (lower-deck) problem describing
the interacting flow regime in the channel is presented in § 3. In § 3.3 we present
a brief discussion of links to the purely inviscid theory given by Kluwick (1993).
Finally, internal-shock profiles of compression, rarefaction, sonic, double-sonic and
split shocks are discussed with respect to inviscid shock theory. In § 4 the asymptotic
properties of internal-shock profiles are analysed analytically, and in § 5 representative
numerical solutions for a selected example of BZT fluid, PP10 (C13F22), are presented.
Most important of all, calculations of the characteristic length scales imminent to the
problem in case of the working fluid PP10 in § 5.2 give an impression of the actual size
of technical flow devices, where the phenomena described in this paper are expected
to be encountered in dense-gas flows.

2. Problem formulation I – governing equations
The non-dimensional quantities are introduced as follows, with the tilde denoting

the dimensional quantities:

(x̃, ỹ) = L̃0(x, y), H̃0 = L̃0H0, (ũ, ṽ) = ũ0(u, v), t̃ =
L̃0

ũ0

t, c̃ = c̃0 c,

ρ̃ = ρ̃0 ρ, p̃ = ρ̃0ũ
2
0 p, θ̃ = θ̃0 θ, h̃ = ũ2

0 h, s̃ = c̃p,0s,

μ̃ = μ̃0 μ, μ̃b = μ̃0 μb, k̃ = k̃0 k.

Here (x̃, ỹ) denote the coordinates in the horizontal and vertical directions and (ũ, ṽ)
the corresponding components of the velocity vector with t̃ denoting the time, c̃

the speed of sound, ρ̃ the density, p̃ the pressure, θ̃ the temperature, h̃ the specific
enthalpy, s̃ the specific entropy, c̃p the specific heat capacity at constant pressure,

μ̃ the dynamic viscosity, μ̃b the bulk viscosity and k̃ the thermal conductivity. The
subscript 0 indicates a reference state defined by the flow quantities evaluated in the
undisturbed core region immediately upstream of the interaction region at a fixed
position L̃0 for a chosen initial configuration (cf. figure 3); δH0, δu0, δρ0 and δp0

introduced in figure 3 denote small variations of the channel height and the inflow
conditions with respect to the chosen reference state.

Then the Navier–Stokes equations for two-dimensional compressible flows
neglecting gravitational forces can be written in the following form:

∂ρ

∂t
+ ∂i(ρui) = 0, (2.1a)

ρ

(
∂ui

∂t
+ uj∂jui

)
= −∂ip +

1

Re
∂j τij , (2.1b)

c2

M2
0

Dρ

Dt
− Dp

Dt
=

G0Ḡ

Re

(
τij∂jui +

1

PrEc
∂k(k ∂kθ)

)
, (2.1c)

with the stress tensor for a Newtonian fluid τij = μb∂kukδij +μ(∂jui+∂iuj −(2/3)∂kukδij )
and the substantial derivative D •/Dt . Here the dimensionless groups

Re :=
ρ̃0L̃0

μ̃0

, M0 :=
ũ0

c̃0

, Ec :=
ũ2

0

c̃p,0T̃0

, Pr :=
k̃0

μ̃0c̃p,0

, G0 :=
ρ̃0

θ̃0

(
∂θ̃

∂ρ̃

)
s̃,0

(2.2)

denote the Reynolds, the Mach, the Eckert and the Prandtl number and the Grüneisen
coefficient G evaluated at the reference state, respectively; Ḡ= G/G0 = O(1) denotes a
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Regular fluid Dense gas

Re � 1 � 1
M0 ≈1 ≈1
Ec O(1) � 1
Pr O(1) O(1)
G0 O(1) � 1

Table 1. Assumptions of the order of magnitude for various dimensionless groups.

properly scaled Grüneisen coefficient. For later convenience we introduce the quantity

c̄ := c/M0 = c̃/ũ0. (2.3)

The centreline of the nozzle y = H0/2 is a line of symmetry,

∂u

∂y
=

∂p

∂y
= 0, x > 0, y =

H0

2
; (2.4)

consequently in the following the boundary conditions are specified for the lower
half-plane only. The boundary conditions at the (adiabatic) wall are

(u, v) = (0, 0),
∂θ

∂y
= 0, x > 0, y = δH0, (2.5)

and those at the channel inflow, i.e. x = 0, δH0 <y <H0 − δH0, are

(u, v) = (1 + δu0, 0), ρ = 1 + δρ0, p = p0 + δp0. (2.6)

Unsteady effects will only be considered in a stability analysis, and these shall be
restricted to the interaction region, i.e. region 3 in figure 3.

2.1. Order of magnitude for relevant dimensionless groups

Table 1 summarizes the assumptions of the orders of magnitude for the dimensionless
groups (2.2) which are important for the problem at hand for both regular, that
is perfect gas-like, fluids and dense gases. In the following, it will be assumed that
Re � 1 and M0 ≈ 1. The first condition leads to the formation of viscosity-dominated
boundary layers at the channel walls. The second condition, assumption of transonic
flow M0 ≈ 1, allows the study of weak shocks causing a transition from supersonic
to subsonic flow conditions in the core region of the channel within the framework
of an asymptotic theory.

The magnitude of Ec depends on the fluid under consideration. For perfect gas
with constant specific heats the relation Ec = (γ − 1)M2

0 = O(1) holds. However, for
dense gases one obtains the estimate Ec = O(M2

0 R̃g/c̃v) (cf. Kluwick 1994). Since in

case of dense gases the ratio of the specific gas constant R̃g and the specific heat at
constant volume c̃v is small because of the relatively large values of the specific heats
in compounds of higher complexity (cf. Kluwick 1994; Colonna & Guardone 2006),
0 <R̃g/c̃v � 1, this suggests Ec → 0 in the dense-gas limit of R̃g/c̃v → 0.

Interestingly enough, in both cases the Prandtl number is of order one, Pr = O(1).
Whereas this is a well-known and validated fact for a perfect gas it is, in the case
of dense gases, only founded on empirical correlations, since measurements in the
dense-gas regime are extremely difficult (Kluwick 1994). These have been supported
by numerical calculations relying on the method of Chung et al. (1988) to calculate
the corresponding transport quantities for PP11, C14F24 (cf. Kluwick 1994).
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Finally, we require that G0 = O(1) at most. Here the van der Waals equation of
state is used as the simplest equation of state which provides a qualitatively correct
description of dense-gas behaviour in order to estimate numerical values of G0 for
various reference states located in the single-phase region. It is hereby found that
the very close vicinity of the thermodynamical critical point, where G0 exhibits
unbounded growth, has to be excluded from the discussion. However, this restriction
is not crucial (in fact it even turns out that G0 = O(R̃g/c̃v) for dense gases elsewhere),
since the thermodynamic region which is of interest here, i.e. the region in which
the fundamental derivative changes its sign, is located sufficiently far away from the
thermodynamical critical point (cf. Kluwick 2004; see also figure 1b).

2.2. One-dimensional transonic flow in channel core

As has been pointed out before, the interacting inviscid flow in the channel core
shall be one-dimensional to the leading order. Therefore, the governing equations
for one-dimensional compressible flow through channels of variable height, assuming
H = H (x, t),

∂

∂t
(ρH ) + ∂x(ρuH ) = 0, (2.7a)

∂u

∂t
+ u∂xu +

1

ρ
∂xp = O(Re−1), (2.7b)

ρθ
Ds

Dt
= O(Re−1), (2.7c)

are shortly introduced at this point, as these will be used in the inspection analysis to
determine the magnitude of the induced perturbations in the core of the interaction
region in § 3.1. It is convenient to write the quasi-linear hyperbolic system (2.7a)–(2.7c)
(for Re → ∞) in the form of compatibility conditions along the right and left running
characteristics dx/dt = u ± c̄:

ρ

(
∂u

∂t
+ (u ± c̄)∂xu

)
± c̄

(
∂ρ

∂t
+ (u ± c̄)∂xρ

)
= ∓ρc̄u∂xH

H
∓ ρc̄

H

∂H

∂t
. (2.8)

A shock discontinuity has to satisfy the Rankine–Hugoniot conditions (as has
been mentioned before in the ‘Introduction’, we consider only stationary shock
discontinuities)

[ρu] = 0, (2.9a)

uaub[ρ] = [p], (2.9b)

2ρaρb[h] = (ρa + ρb)[p], (2.9c)

[s] � 0, (2.9d )

where the brackets denote jumps, i.e. [a] = aa − ab, and the superscripts a and b refer
to conditions after and before the shock.

3. Problem formulation II – interaction problem
3.1. Inspection analysis

Guided by other triple-deck problems, the estimates of the order of magnitude for the
relevant flow quantities are formulated. In particular, it is assumed that the pressure
disturbances acting in the interacting boundary layer, i.e. the lower and main decks
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Figure 4. Triple-deck structure of interaction region; ‘CL’ denotes the centreline.

(cf. figure 4), are primarily enforced by the induced pressure disturbances in the
upper deck. As is depicted in figure 4 the former core region is represented by a
single upper deck which is bounded by the interacting boundary layers from below
and above. In the following (a)b indicates that the flow quantity a is evaluated in the
deck denoted by the subscript b, with b being l, m or u for the lower, main or upper
deck, respectively, and 0 <Δa � 1 denotes a small perturbation of a.

In short, for the lower deck the following assumptions are made: match of
the thin-lower-deck with the oncoming boundary layer represented by U0(ym) (cf.
figure 4), yielding (u)l ∼ Δ(u)l ∼ ε ∼ U ′

0(0)Re1/2δl , hereby introducing the perturbation
parameter 0 <ε � 1 as a measure of the streamwise velocity perturbation in the
lower deck; balance of inertia and pressure terms in the x -momentum equation,
Δ(u)2l ∼ Δ(p)u ∼ ε2; balance of inertia and viscous terms in the x -momentum
equation, Δ(u)l/Δx ∼ Re−1δ−2

l ; and we require a non-degenerate continuity equation,
Δ(u)l/Δx ∼ Δ(v)l/δl . For the passive main deck the assumptions are as follows:
balance with lower-deck shift of the velocity profile, Δ(u)m ∼ Δ(u)l; exerted
displacement on the upper deck, Δ(v)m ∼ Δ(v)u; and non-degenerate continuity
equation, Δ(u)m/Δx ∼ Δ(v)m/Re−1/2. The relevant steps of the analysis to establish
the dependence of ε on the Reynolds number Re have been summarized in table 2
to improve the readability of the text.

In order to obtain the appropriate estimates of the order of magnitude for the upper
deck the underlying ideas shall be briefly outlined. The one-dimensional core-region
flow is weakly disturbed by the interaction process. The resulting upper-deck flow,
in general, is two-dimensional; however, here we seek a distinguished situation in
which the channel is sufficiently narrow so that the flow in the upper deck becomes
one-dimensional to the leading order. Since the streamwise extent of the interaction
region Δx is dependent on the Reynolds number Re, the same has to be true for
the channel height H0 − 2δH0 ∼ Δ(H )u. The key to viscous–inviscid interactions is
that the interacting boundary layer affects the inviscid flow in the upper deck and
vice versa. In the situation to be considered in the current paper, the single upper
deck is confined between the two boundary layers at the channel walls. Consequently
the displacement that the interacting boundary layers exert on the upper-deck flow
leads to a reduction of the effective flow cross-section for the inviscid core-region
flow. Formally one writes (H )u(x, t) =H0 − 2δH0 − 2Ad(x, t) ∼ Δ(H )u for the effective
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Inspection analysis Description

Lower deck:
(u)l ∼ Δ(u)l ∼ ε Thin lower deck and no slip at the wall.
(u)l ∼ U ′

0(0)Re1/2δl Matching against oncoming boundary layer.
Δ(u)2l ∼ Δ(p)u ∼ ε2 Balance of inertia and pressure terms in x -momentum equation.
Δ(u)l/Δx ∼ Re−1δ−2

l Balance of inertia and viscous terms in x -momentum equation.
Δ(u)l/Δx ∼ Δ(v)l/δl Non-degenerate continuity equation.

Main deck:
Δ(u)m ∼ Δ(u)l Balance with lower-deck shift of the velocity profile.
Δ(v)m ∼ Δ(v)u Exerted displacement on the upper deck.
Δ(u)m/Δx ∼ Δ(v)m/Re−1/2 Non-degenerate continuity equation.

Upper deck:
H0 − 2δH0 ∼ Δ(H )u Channel height depends on one-dimensional limit.
(H )u(x, t) =H0 − 2δH0 Boundary-layer displacement Ad reduces flow

−2Ad (x, t) ∼ Δ(H )u cross-section (H )u(x, t).
∂x(H )u = −2∂xAd ∼ Δ(v)u Boundary-layer displacement induces vertical flow at the

leading order (strong interaction).
Δ(ρ)u ∼ Δ(u)u ∼ Δ(p)u ∼ ε2 Degenerate compatibility relation for the right running

characteristics.
Γ0 ∼ ε2(n−2), Λ0 ∼ εmax{2(n−3),0}, Thermodynamic characterization of a dense gas via

N0 ∼ 1 the parameter n ∈ {2, 3, 4} in the relevant flow regime.
1 − M2

0 ∼ ε2(n−1) Transonic flow.
ε2n/Δx ∼ Δ(v)u/Δ(H )u and Non-degenerate compatibility relation for the left running

1/Δt ∼ ε2(n−1)/Δx characteristics.
ε3/Δ(H )u ∼ Δ(v)u/Δx Irrotational flow.

Table 2. Summary of the inspection analysis.

upper-deck channel height, where Ad shall denote the local displacement (cf. figure 4).
The reduction of the effective flow cross-section, however, induces a small vertical
velocity component in the upper-deck flow, i.e. ∂x(H )u = −2∂xAd ∼ Δ(v)u. Now taking
a look at the two compatibility relations for one-dimensional compressible isentropic
flow (2.8) on the right and left running characteristics dx/dt = u ± c̄ and keeping
in mind that the core-region flow is transonic, |u − c̄| � u + c̄ ∼ 1, we find that the
long-term behaviour of the system is characterized by the left running characteristics
only. Disturbances moving along the right running characteristics will eventually
leave the interaction region in fact ‘immediately’ when a time scaling of the governing
equations preserving the slow-time scales is applied. As a result there is not sufficient
time for the right-hand side of the compatibility relation along the right running
characteristics accounting for the channel geometry to affect the variation of the field
quantities at the leading order. Consequently, as known from other studies of quasi-
one-dimensional channel flow, e.g. Chandrasekar & Prasad (1991) and Kluwick &
Scheichl (1996), the perturbations of the density, the streamwise velocity and the
pressure satisfy Δ(ρ)u ∼ Δ(u)u ∼ Δ(p)u ∼ ε2.

For the purpose of gaining further insight into the long-term flow behaviour
we have to consider the compatibility relation for the left running characteristic
dx/dt = u − c̄, i.e.

ρ

(
∂u

∂t
+ (u − c̄)∂xu

)
− c̄

(
∂ρ

∂t
+ (u − c̄)∂xρ

)
=

ρc̄u∂xH

H
+

ρc̄

H

∂H

∂t
, (3.1)
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in more detail. The factor u − c̄ = c̄(M − 1) entering (3.1) can be Taylor expanded
about the reference state, i.e. M = M0, ρ = 1, c = 1. As shown in Thompson (1971),
Cramer (1991) or Kluwick (1993) the variation of M with ρ under isentropic flow
conditions is given by (

∂M

∂ρ

)
s

=
M

ρ

(
1 − Γ − 1

M2

)
, (3.2)

and assuming that the fundamental derivative is expressed in terms of ρ and s, i.e.
Γ =Γ (ρ, s), one finally obtains the expression

c̄(M − 1) = M0 − 1 − Γ0(ρ − 1) +
1

2
(Γ 2

0 − Γ0 − Λ0)(ρ − 1)2

+
1

6
(3Γ 3

0 − 3Γ 2
0 + 14Γ0 − 4Λ0 + 5Γ0Λ0 − N0)(ρ − 1)3 + . . . (3.3)

for the Taylor expansion of u − c̄ about the reference state, introducing the quantities

Λ = (∂Γ/∂ρ)s, (3.4)

N = (∂2Γ/∂ρ2)s . (3.5)

Let Δ(ρ)u ∼ ε2 be a measure of the small density disturbances ρ − 1 which are
induced in the interacting core-region flow, i.e. the upper deck. As far as the reference
state is concerned three different regimes have to be distinguished in the p versus
1/ρ-diagram (cf. figure 1b). For states characterized by points in regions n= 2 in
figure 1(b), Γ0 ∼ 1, Λ0 ∼ 1 and N0 ∼ 1, and the density disturbances are too small
to lead to a change in the sign of the fundamental derivative. Consequently, the
second and the third term in expression (3.3) represent higher-order corrections and
M0 − 1 ∼ ε2. This situation will hereafter be denoted as the case of positive (negative)
nonlinearity if Γ > 0 (Γ < 0), since it is the case of a strictly convex (concave) flux
function in (3.3). Conversely, a case of mixed nonlinearity denotes a situation in
which Γ changes its sign in the flow region of interest, resulting in a non-convex
flux function. Note that in the following, we will always use non-convex to indicate
the mixed nonlinear behaviour of a function and never in the sense of concave
being the opposite of convex, as well. The reference state has to be sufficiently
close to the transition line Γ =0. This is the region denoted by n=3 in figure 1(b),
where Γ0 ∼ ε2, Λ0 ∼ 1, N0 ∼ 1 and M0 − 1 ∼ ε4, and the region denoted by n= 4
(close vicinity of the point at which an isentrope touches the transition line in
figure 1b) where Γ0 ∼ ε4, Λ0 ∼ ε2, N0 ∼ 1 and M0 − 1 ∼ ε6. The argument of a
non-degenerate compatibility relation along the left running characteristics (3.1)
suggests the balance of the terms ρ(u − c̄)∂xu, −ρc̄u∂xAd/H and ρ∂u/∂t motivating
the estimates ε2n/Δx ∼ Δ(v)u/Δ(H )u and 1/Δt ∼ ε2(n−1)/Δx. The last argument
concerning the order of magnitude of the upper-deck flow quantities concerns the
deviation of the streamlines from the undisturbed oncoming parallel flow expressed
by Δ(v)u/Δ(u)u. To this end one writes down the formal asymptotic expansion
for (u)u ∼ 1 + ε2u(1)

u + ε3u(2)
u + . . . and makes the estimate (v)u ∼ Δ(v)uv

(1)
u . Since

the u(1)
u -field shall be one-dimensional, i.e. depending only on x, the condition of

irrotational flow in the upper deck yields the estimate ε3/Δ(H )u ∼ Δ(v)u/Δx.
With the given relations for the order of magnitudes of the induced flow quantities

in the interaction region (cf. table 2), the small-perturbation parameter ε is found to be

ε = Re−1/(7+2n). (3.6)
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Additionally, one finally obtains the estimates

Δx ∼ ε3, δl ∼ εn+9/2, δm ∼ Re−1/2 = εn+7/2, Δ(H )u ∼ ε−n+9/2 (3.7)

for the spatial extent of the various decks and the estimate

Δt ∼ ε5−2n (3.8)

for the appropriate time scaling.
The inflow conditions have to be varied such that δH0 ∼ δl � Re−1/2 and δp0 ∼

Δ(p)u.

3.2. Formal asymptotic expansions and fundamental problem

For the main deck which comprises most of the interacting boundary layer the
inspection analysis suggests

x = 1 + ε3x1, y = εn+7/2ym, t = ε5−2nt1, (3.9)

where the subscript 1 denotes the quantities used in all three decks, and for the
various flow quantities

(u, v)m = (U0(ym) + εu(1)
m (x1, ym, t1) + . . . , εn+3/2v(1)

m (x1, ym, t1) + . . . ),

(ρ)m = R0(ym) + ερ(1)
m (x1, ym, t1) + . . . ,

(p)m = p0 + ε2p
(1)
1 (x1, ym, t1) + . . . .

⎫⎪⎬
⎪⎭ (3.10)

Here U0(ym) and R0(ym) represent the velocity and density profiles in the undisturbed
boundary layer at x =1. Substitution of (3.10) and (3.9) into the full Navier–Stokes
equations (2.1a)–(2.1c) and taking the limit Re → ∞, one finally finds the classical
result that the leading-order perturbations of the velocity components and density
are unaffected by the pressure and viscous forces and can be expressed in terms of a
(yet-unknown) displacement function −A1(x1, t1)

u(1)
m = A1U

′
0, v(1)

m = −∂x1
A1U0, ρ(1)

m = A1R0. (3.11)

The crucial points here are that the Grüneisen coefficient G0 which enters the
formulation of the energy equation (2.1c) has been found to be O(1) or even O(δ)
for BZT fluids (cf. § 2.1) and that the main-deck problem does not depend explicitly
on the time to the leading order under the applied time scaling (3.9). The pressure
disturbances

p
(1)
1 = p

(1)
1 (x1, t1) (3.12)

are enforced by the induced pressure disturbances in the upper deck and, therefore, do
not depend on the lateral distance ym. The main deck behaves passively and primarily
acts to transfer the pressure disturbances generated in the upper-deck flow unchanged
to the lower deck and the displacement effects exerted by the lower-deck reaction to
the pressure disturbances unchanged back to the upper deck. The displacement effect
evoked by the interacting boundary layer which can be seen e.g. by evaluating (3.11)
at the edge of the boundary layer,

u(1)
m = ρ(1)

m = 0, v(1)
m = −∂x1

A1, ym → ∞, (3.13)

highlighting the notion displacement function for −A1 ultimately leads to a reduction
Ad = Re−1/2δ∗(1) − εn+9/2A1(x1, t1) of the effective crossflow section for the upper-deck
flow,

(H )u = ε−n+9/2H01 − 2
(
εn+7/2δ∗(1) + εn+9/2(δH01 − A1(x1, t1)) + . . .

)
, (3.14)
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as has been argued in the inspection analysis (cf. figure 4). Here, the term
εn+7/2δ∗(1) = Re−1/2δ∗(1) (cf. (3.6)) corresponds to the core-region flow displacement
by the oncoming non-interacting boundary-layer flow at x = 1 according to classical
boundary-layer theory.

For the other relevant flow quantities of the one-dimensional inviscid upper-deck
flow we write

(u)u = 1 + ε2u(1)
u (x1, t1) + . . . , (3.15)

(ρ)u = 1 + ε2ρ(1)
u (x1, t1) + . . . , (3.16)

(c)u = 1 + ε2c(1)
u (x1, t1) + . . . , (3.17)

(p)u = p0 + ε2p
(1)
1 (x1, t1) (3.18)

and

1 − M2
0 = ε2(n−1)K, (3.19)

Γ0 = ε2(n−2)Γ̄ , Λ0 = εmax{2(n−3),0}Λ̄, N0 = N̄ . (3.20)

Here K = O(1) denotes a scaled transonic similarity parameter; for K > 0 the
oncoming undisturbed core-region flow is subsonic, and for K < 0 it is supersonic.
Furthermore, (Γ̄ , Λ̄, N̄) = O(1). After insertion of (3.14) and (3.15) into (2.7a) and
(2.7b) one finds

u(1)
u = −ρ(1)

u = −p
(1)
1 (3.21)

after integration with respect to x1 and provided δu0 = −δρ0 = −δp0. The compatibility
condition along the left running characteristics (2.8) yields a relationship between the
induced pressure disturbances inside the upper deck and the displacement function,

∂p
(1)
1

∂t1
+

1

2

∂

∂x1

J[n]

(
p

(1)
1 ; K, Γ̄ , Λ̄, N̄

)
= − 1

H01

∂A1

∂x1

, (3.22)

making use of expression (3.3) and introducing the perturbation of the mass flux
density,

J[n](p; K, Γ̄ , Λ̄, N̄) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Kp − Γ̄ p2, n = 2,

−Kp − Γ̄ p2 − 1

3
Λ̄p3, n = 3,

−Kp − Γ̄ p2 − 1

3
Λ̄p3 − 1

12
N̄p4, n = 4.

(3.23)

The displacement function −A1(x1, t1) is an outcome of the solution to the lower-
deck problem which is obtained by introducing the following expansions (given here
in a form which will eliminate most of the parameters characterizing the unperturbed
flow in the resulting distinguished limit):

(u)l = εR0(0)−1/2|2Γ̄ /K |−1/2U (X, Y, T ) + . . . ,

(v)l = εn+5/2μwR0(0)−1/2U ′
0(0)|2Γ̄ /K |1/2V (X, Y, T ) + . . . ,

(ρ)l = R0(0) + . . . ,

(p)l = p0 + ε2|2Γ̄ /K |−1P (X, T ) + . . . ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.24)

where

(y)l = εn+9/2R0(0)−1/2U ′
0(0)−1|2Γ̄ /K |−1/2(Y + S−∞) (3.25)
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and

x1 = μ−1
w R0(0)−1/2U ′

0(0)−2|2Γ̄ /K |−3/2X, (3.26)

t1 = μ−1
w R0(0)−1/2U ′

0(0)−2|Γ |−1|2Γ̄ /K |−1/2T , (3.27)

A1 = R0(0)−1/2U ′
0(0)−1|2Γ̄ /K |−1/2(A(X, T ) − S−∞). (3.28)

Here S−∞ denotes the scaled variation of the channel height,

δH0 = εn+9/2R0(0)−1/2U ′
0(0)−1|2Γ̄ /K |−1/2S−∞, (3.29)

and μw is the dynamic viscosity evaluated at the channel wall. Insertion into the full
Navier–Stokes equation yields the fundamental lower-deck equations in canonical, i.e.
parameter-free, form,

∂U

∂X
+

∂V

∂Y
= 0, U

∂U

∂X
+ V

∂U

∂Y
= −∂P

∂X
+

∂2U

∂Y 2
. (3.30)

These are supplemented by the no-slip condition at the wall,

U = V = 0, Y = 0, (3.31)

the conditions of matching with the undisturbed non-interacting boundary layer
upstream,

U = Y, V = 0, P = P−∞, X → −∞, (3.32)

where P−∞ is the scaled variation of the inflow pressure,

δP0 = ε2|2Γ̄ /K |P−∞, (3.33)

and the conditions of matching with the main deck flow,

U = Y + A(X, T ), Y → ∞. (3.34)

The quasi-steady lower-deck problem (3.30)–(3.34) is closed by the interaction relation
(3.22) which reads in canonical form as

−∂P

∂T
+

∂

∂X
G[n] (P ; K, Γ−∞, Λ−∞, N−∞) = Q

∂

∂X
(A − S−∞), (3.35)

where G[n] is a scaled version of −J[n] defined by

G[n](P ; K, Γ, Λ, N ) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sign(K)P +
1

2
Γ P 2, n = 2,

sign(K)P +
1

2
Γ P 2 +

1

6
ΛP 3, n = 3,

sign(K)P +
1

2
Γ P 2 +

1

6
ΛP 3 +

1

24
NP 4, n = 4.

(3.36)

The parameters entering the canonical formulation, i.e.

Γ−∞ = Γ̄ |Γ̄ |−1, (3.37)

Λ−∞ = Λ̄|2Γ̄ /K |−1|Γ̄ |−1, (3.38)

N−∞ = N̄ |2Γ̄ /K |−2|Γ̄ |−1, (3.39)

Q = 2−1R0(0)−1/2U ′
0(0)−1|2Γ̄ /K |3/2|Γ̄ |−1H −1

01 > 0, (3.40)
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are essential parameters to the problem and are therefore not eliminated by the
transformation (3.24)–(3.26). Integration of the interaction law (3.35) for steady flows
(which are the main focus of the present paper) with respect to X gives

G[n](P ) − Q (A − S−∞) = j
(1)
1 = 0, (3.41)

where the dependence of G[n] on the parameters has been suppressed. Evaluation of
(3.41) for X → − ∞ taking note of (3.32) and (3.34) indicates that the integration
constant j

(1)
1 , in general, depends on the chosen variation of the channel height

S−∞ and the inflow conditions P−∞, i.e. j
(1)
1 = G[n](P−∞) + QS−∞. In the following we

impose that j
(1)
1 = 0, and consequently the variations P−∞ and S−∞ have to satisfy the

compatibility condition,

G[n](P−∞) + QS−∞ = 0. (3.42)

Motivated by physical considerations presented in § 3.3 we henceforth vary the
channel height and the inflow conditions in such a way that the mass flux in the
oncoming inviscid channel core remains unchanged to the initial situation of a nozzle
characterized by the chosen reference states.

3.3. The interaction relation – links to inviscid theory

The function J[n] in (3.23) has been introduced as the perturbation mass flux density
in the interaction relation (3.22). If A1 would be a given geometric variation of the
channel cross-section instead of the displacement evoked by the interacting boundary
layers the interaction relation (3.22) would take on the form of the unsteady transonic
small-disturbance equation which describes the long-term propagation of disturbances
in inviscid dense-gas flow through a slowly varying channel (cf. Kluwick & Scheichl
1996). The version for steady flows,

J[n]

(
p

(1)
1 ; K, Γ̄ , Λ̄, N̄

)
+

A1

H01

= constant, (3.43)

would then express the continuity of the perturbation mass flux (cf. Kluwick 1993).
Since G[n] is a scaled version of −J[n] the interaction law (3.41) has the same

interpretation, and the integration constant j
(1)
1 in (3.41) has the meaning of a (scaled)

perturbation mass flux.
Because of (3.3) the Mach number variation in the interacting channel core during

isentropic expansion or compression can be written in the form

(M − 1)/ε2(n−1) =
1

2
dJ[n]/dp

(1)
1 + · · · = −4−1|K |2|Γ̄ |−1dG[n]/dP + . . . . (3.44)

From (3.44) it is evident that the Mach number varies in a non-monotonous manner
in case of dense gases exhibiting mixed nonlinearity, i.e. n= 3 and n= 4.

A stationary normal shock forming in purely inviscid compressible channel flow
has to satisfy the Rankine–Hugoniot jump conditions (2.9). In particular, condition
(2.9a) ensuring the continuity of the mass flux across a shock discontinuity yields the
relation [

G[n](P ; K, Γ−∞, Λ−∞, N−∞)
]

= 0 (3.45)

for all possible candidates of flow conditions after the shock P a for a given flow
condition P b before the shock. Here and in the following we use G[n] instead of J[n]

without loss of generality.
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In general, the jump relations (2.9) are not sufficient to rule out inadmissible shocks
for general fluids exhibiting mixed nonlinearity in the dense-gas regime because of
the non-convexity of the mass flux density relation. To this end these have been
generalized in Kluwick (1993) for the stationary inviscid nozzle flow of dense gases
described by the transonic small-disturbance equation to the shock admissibility
criterion which is summarized here in Theorem 3.1.

Theorem 3.1 (Shock admissibility criterion, inviscid flow). A weak stationary
normal shock forming in one-dimensional inviscid flow of dense gases, which is governed
by the negative perturbation mass flux density G[n] (3.36), is admissible if and only if
the following conditions are met:

(a) The Rayleigh line connecting the states before and after the shock,

CR = {(P, G) : G = G[n](P
b; K, Γ−∞, Λ−∞, N−∞), P ∈ [P b, P a]}, (3.46)

does not intersect the intervening branches of the graph,

CG = {(P, G) : G = G[n](P ; K, Γ−∞, Λ−∞, N−∞), P ∈ [P b, P a]}. (3.47)

(b) The flow conditions before and after a shock have to satisfy Mb � 1 � Ma .
(c) In case of a double-sonic shock, Ma = 1 = Mb, the shock has to be an expansion

shock.

Shocks which satisfy the shock admissibility criterion (3.1) have been found to be
consistent with internal-shock profiles resulting from thermo-viscous regularization
in external flows (cf. Cramer & Crickenberger 1991; Kluwick 1993). In the following
the shock admissibility criterion shall be discussed in the light of internal-shock
profiles resulting from a regularization by viscous–inviscid interactions in internal
flows through narrow channels.

4. Analytical results for non-trivial eigensolutions
4.1. Eigensolutions, internal-shock profiles and pseudo-shocks

An interesting property of non-trivial eigensolutions to the steady interaction problem
(3.30)–(3.34) and (3.41) is that they correspond to the internal structures of weak
normal shocks. These have to connect the undisturbed states in the inviscid flow
regime before (upstream) the shock discontinuity,

P = P b = P−∞, A = 0, U = Y, X → −∞,

with the undisturbed flow states after (downstream) the shock,

P = P a, A = 0, U = Y, X → ∞.

The values of P b ( = P−∞) and P a thereby have to satisfy the jump condition (3.45)
[G[n]] = G[n](P

a)−G[n](P
b) = 0. On the other hand, in the Introduction we have argued

that the shock–boundary-layer interaction should ultimately lead to the formation
of a weak pseudo-normal shock in order to motivate the regularizing mechanism
of shock–boundary-layer interaction to be expected in internal narrow-channel flows.
However, a pseudo-shock, in general, is not an internal-shock profile, since the pressure
jump obtained by a pseudo-shock is smaller than that predicted by the purely inviscid
theory (cf. Matsuo et al. 1999), but in the weak-shock limit M0 → 1 considered here,
as will be discussed in the following, the notion of weak pseudo-shock, internal-shock
profile and non-trivial eigensolution to the interaction problem are equivalent and
interchangeable.
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4.2. Asymptotic far upstream behaviour

The upstream behaviour of the stationary interacting flow for X → −∞ can be
investigated by extending the analysis of Lighthill (1953) and Stewartson & Williams
(1969), dealing with freely interacting boundary layers in external supersonic flows
to incorporate the algebraic interaction law (3.41) and the new matching conditions
upstream (3.32). The ansatz

U = Y − a1e
κXf1(Y ) + . . . , V = a1κeκXf ′

1(Y )) + . . . ,

P = P−∞ + a1e
κX + . . .

(4.1)

with exp(κX) → 0 for X → − ∞ leads to the expression

f ′
1(Y ) =

∫ Y

0

Ai(κ1/3s) ds, f1(Y ) =

∫ Y

0

∫ z

0

Ai(κ1/3s) ds dz (4.2)

for f1 and the well-known result for the displacement function

A(X) =
a1

3Ai′(0)
κ1/3eκX, Ai′(0) < 0, (4.3)

where Ai denotes the Airy function (Abramowitz & Stegun 1970). Substitution of the
expressions for P and A into the algebraic interaction law (3.41) and collecting terms
O(exp(mκX)) with m ∈ �0 yields to the leading order (m =0)

G[n] (P−∞; K, Γ−∞, Λ−∞, N−∞) = −QS−∞, (4.4)

which is immediately satisfied because of the compatibility assumptions made for
the variation of the inflow conditions (3.42). By considering terms O(exp(κX)) one
obtains the expression

G′
[n] (P−∞; . . . ) :=

d

dP
G[n] (P−∞; K, Γ−∞, Λ−∞, N−∞) =

Q

3Ai′(0)
κ1/3, (4.5)

yielding a relation for κ:

κ =

(
G′

[n] (P−∞; . . . )
3Ai′(0)

Q

)3

. (4.6)

A non-trivial eigensolution to the fundamental problem has to decay for X → − ∞
because of (3.32). Taking note of the sign of Ai′(0) < 0 (cf. Abramowitz & Stegun 1970)
and Q > 0 (cf. (3.40)), this implies G′

[n](P−∞, . . . ) � 0. Consequently, the oncoming
channel flow has to be supersonic, i.e. G′

[n](P−∞, . . . ) < 0, or sonic in the limiting case

G′
[n](P−∞, . . . ) → 0− (cf. (3.44)). In particular, this result, i.e. Mb � 1, is in accordance

with the shock admissibility criterion in Theorem 3.1 for inviscid nozzle flow.

4.2.1. Linear spatial stability of undisturbed flow states

The generalization of Lighthill’s ansatz used before (4.1) can be extended even
further in order to study the linear spatial stability of an arbitrary undisturbed flow
state represented by P−∞ and S−∞ which always is a trivial solution of the interaction
problem (3.30)–(3.34) and (3.41). To this end we write

U = Re{Û} = Y − Re{a1e
κX−iωT f1(Y )} + . . . ,

V = Re{V̂ } = Re{a1κeκX−iωT f ′
1(Y )} + . . . ,

P = Re{P̂ } = P−∞ + Re{a1e
κX−iωT } + . . . ,

⎫⎪⎬
⎪⎭ (4.7)
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with ω ∈ � some given harmonic frequency and κ ∈ � the corresponding unknown
complex wavenumber. Furthermore, X, Y, P−∞ ∈ �, a1 ∈ � and f1 : � → �.

By plugging (4.7) into the equation for the quasi-steady lower-deck flow (3.30)–(3.34)
one recovers (4.2) for f1,

f ′
1(Y ) =

∫ Y

0

Ai(κ1/3s) ds, f1(Y ) =

∫ Y

0

∫ z

0

Ai(κ1/3s) ds dz,

with the main difference that κ ∈ � herein. From the asymptotic properties of the
Airy function Ai(z) for z ∈ � and |z| → ∞ one infers that the integrals exist for Y → ∞
only if κ ∈ {z ∈ � : |Arg(z)| � π/3}. Evaluating the matching condition (3.34) then
leads to

A = Re{Â} = Re

{
a1

3Ai′(0)
κ1/3eκX−iωT

}
, (4.8)

and after insertion into the linearized interaction law for unsteady flow one finally
obtains a relation between the harmonic frequency and the complex wavenumber,

iω + G′
[n](P−∞)κ =

Q

3Ai′(0)
κ4/3, (4.9)

where the dependence of G[n] on the parameters K , Γ−∞, Λ−∞, N−∞ has been
suppressed. Provided G′

[n](P−∞) = 0, (4.9) can be written in the manner

iω̄ + κ̄ = sign(Ai′(0)G′
[n](P−∞))κ̄4/3, (4.10)

introducing a modified definition of the harmonic frequency and of the wavenumbers,
ω̄ and κ̄ ,

ω̄ = C
ω

G′
[n](P−∞)

∈ �, κ̄ = Cκ ∈ �, (4.11)

with

C =

∣∣∣∣∣ Q

3Ai′(0)G′
[n](P−∞)

∣∣∣∣∣
3

> 0. (4.12)

Note that the new definition κ̄ for the wavenumber is only a rescaling of κ , i.e.
Arg(κ) = Arg(κ̄). Interestingly enough, for the discussion of (4.10) only two cases
have to be considered, i.e. G′

[n] < 0 and G′
[n] > 0. That is to say one simply has to

distinguish between supersonic and subsonic flows.
A candidate for a solution to (4.10) for a given ω̄ can be obtained by finding the

roots of the polynomial

sign(Ai′(0)G′
[n](P−∞))κ̄4 − κ̄3 − 3iω̄κ̄2 + 3ω̄2κ̄ + iω̄3 = 0 (4.13)

which are plotted in figure 5. From the four possible wavenumbers κ̄ for a given
harmonic frequency ω̄ only those that lie in the set Ωκ = {z ∈ � : |Arg(z)| � π/3},
depicted by the shaded regions in figure 5, lead to a non-trivial solution of the
lower-deck problem, as has been noted before. On the other hand, linear spatial
stability of the trivial solution requires that the real part of κ̄ has to be negative,
Re{κ̄} < 0; i.e. some disturbance generated at a purely harmonic frequency ω̄ is dying
out downstream. In case of Re{κ̄} > 0 the disturbances are growing exponentially
downstream until nonlinearity takes over.
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Figure 5. Roots κ̄ of (4.10) under variation of ω̄ for (a) supersonic, i.e. G′
[n](P−∞) < 0, and

(b) subsonic, i.e. G′
[n](P−∞) > 0, undisturbed initial flow.

Keeping that in mind, figure 5 can be interpreted in the following way. Taking a
look at figure 5(a), the case of a supersonic trivial solution of the interaction problem,
and setting ω̄ = 0, i.e. applying a steady disturbance, one obtains the result κ̄1,2,3 = 0
for the first three wavenumbers, which is the trivial solution again, and κ̄4 = 1 ∈ �; κ̄4

lies within the set Ωκ , and therefore ansatz (4.7) leads to a non-trivial solution for κ̄4

which results in disturbances growing downstream because of Re{κ̄} > 0. Making use
of (4.11), result (4.6) based on Lighthill’s ansatz (4.1) is retrieved. For ω̄ ∈ [−ω̄c, ω̄c]
there exists only the one non-trivial solution on branch 4 which is exponentially
growing downstream. For |ω̄| > ω̄c the second branch, branch 3 in figure 5(a), enters
the region Ωκ .

The situation in the case of a subsonic trivial solution of the interaction problem is
quite different (see figure 5b). For ω̄ = 0 no non-trivial growing mode can exist since
κ̄1,2,3,4 /∈ Ωκ . This situation does not change as long as ω̄ ∈ [−ω̄c, ω̄c]. However, as
soon as |ω̄| >ω̄c, branch 4 enters Ωκ and a growing mode exists besides the trivial
flow state.

Therefore we conclude that the supersonic trivial flow state, i.e.

P = P−∞, A = 0, U = Y, G′
[n](P−∞) < 0,

is unconditionally unstable according to the concept of linear spatial stability, and
the subsonic trivial flow state, i.e.

P = P−∞, A = 0, U = Y, G′
[n](P−∞) > 0,
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is stable as long as the harmonic frequency of the disturbance satisfies the condition
|ω̄| <ω̄c.

4.3. Asymptotic far downstream behaviour

The investigation of the downstream behaviour of the steady interacting flow closely
follows the analysis by Kluwick et al. (2009) who applied the results derived by
Gittler (1992), which described the asymptotic properties of a very general class of
steady triple-deck problems in the limiting cases of Y � 1 and X � 1 to a triple-
deck problem with a local interaction law, closely resembling (3.41) and describing
weakly nonlinear bores in laminar high-Reynolds-number flow. The significant and
fundamental difference from the interaction problem considered in this treatise is,
besides the different underlying physics involved, that their interaction law accounts
only for terms of quadratic nonlinearity in the pressure and that, additionally, a
dispersive term is present in their relation.

As a starting point the stream function Ψ (X, Y ) : U = ∂Ψ/∂Y, V = − ∂Ψ/∂X is
expanded for Y → ∞,

Ψ (X, Y ) ∼ 1

2
(Y + A(X))2 + P (X) + KrsY

r (lnY )s + . . . (4.14)

with r < 2. This expression is valid for all X and contains free constants Krs . Since
the flow structure far upstream is given by (4.1) and (4.2), the corresponding velocity
disturbances U − Y , V decay exponentially with Y → ∞ because of the asymptotic
properties of the Airy function (see Abramowitz & Stegun 1970). Consequently the
algebraic terms in Y in (4.14) vanish, Krs = 0. Therefore, if the assumption that the
interacting flow approaches an undisturbed state downstream is correct, then Ψ has
to take on the following form far downstream:

Ψ (X, Y ) ∼ 1

2
Y 2 + A(X)Y + P a + . . . , X → ∞, Y → ∞. (4.15)

This result has to be compared with the similarity form of the stream function far
downstream (Gittler 1992),

Ψ (X, Y ) ∼ 1

2
Y 2 + αXβf2(η) + C2X

λh2(η) + · · · , η =
Y

X1/3
. (4.16)

If as in the present case no external agencies are affecting the flow under consideration
(no surface-mounted obstacle, say), then the parameter α =0, thereby eliminating the
second term in (4.16). The third term represents a homogeneous eigensolution with
the eigenvalue λ, and its asymptotic behaviour of h(η) for η → ∞ has been given in
Gittler (1992):

h(η) ∼ K1η + K2η
3λ + K3e

−3λ−4e−η2/9 + . . . , η → ∞. (4.17)

The two constants K1 and K3 are arbitrary while

K2 =

Γ

(
2

3

)
3−2λ+1/3

(3λ − 1)Γ (λ + 1)
(4.18)

with Γ (·) denoting the Gamma function. Therefore, in the end a second expression
describing the properties of Ψ in the limit X → ∞, Y → ∞ is obtained:

Ψ (X, Y ) ∼ 1

2
Y 2 + C2K1X

λ−1/3Y + C2K2Y
3λ + . . . , X → ∞, Y → ∞. (4.19)
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Comparison of (4.15) and (4.19) for Ψ implies λ= 0 and

A(X) ∼ C2K1X
−1/3 + . . . , X → ∞. (4.20)

Finally, substitution of (4.20) into the linearized interaction law for steady flow (3.41)
yields the asymptotic behaviour of the pressure far downstream. Provided G′

[n](P
a) = 0

it takes on the form

P (X) ∼ P a +
QC2K1

G′
[n](P

a)
X−1/3 + . . . , X → ∞, (4.21)

again suppressing the dependence of G[n] on the scaled parameters K , Γ−∞, Λ−∞
and N−∞. However, if the shock terminates in a sonic flow state far downstream, i.e.
G′

[n](P
a) = 0, then the asymptotic behaviour of the pressure is given by

P (X) ∼ P a + sign(G′′(P a))

(
2QC2K1

G′′
[n](P

a)

)1/2

X−1/6 + . . . , X → ∞, (4.22)

indicating an even weaker algebraic decay of the pressure than in (4.21).
Most important of all, a non-trivial eigensolution of the interaction problem

approaches an undisturbed flow state downstream of the interaction region at
a pressure P a which is predicted by inviscid theory, i.e. [G[n]] = 0. Moreover,
the requirement that the Rayleigh line connecting the states before and after
an admissible shock does not intersect the intervening branches of the graph
CG = {(P, G[n](P )) | P ∈ [P b, P a]} (cf. Theorem 3.1) can be motivated too. Since
a non-trivial eigensolution can only exist for supersonic flow conditions upstream,
i.e. G′

[n](P
b) < 0 (cf. § 4.2), the first undisturbed state, which a fluid particle passing

through the interaction region is approaching far downstream, is bound to be subsonic
or sonic, i.e. G′

[n](P
a) � 0 and Ma � 1. On the other hand, the results of § 4.2 show

that the subsonic undisturbed flow state is stable according to the concept of linear
spatial stability at least for disturbances at a harmonic frequency below some bound
ω̄c. Consequently, without the action of external agencies like a variation of the
channel throat area the fluid particle is attracted towards the undisturbed subsonic
flow state and will not pass through it, and the Rayleigh line will not cross the graph
CG.

We thus conclude that the admissibility criterion theorem, Theorem 3.1, formulated
for the case of inviscid flows is automatically satisfied by the internal profiles of
regular and sonic shocks resulting from the regularization because of viscous–inviscid
interactions of the type considered here. However, the last issue of Theorem 3.1 stating
that a double-sonic shock is bound to be a rarefaction shock can only be clarified by
studying numerical results.

5. Numerical results for non-trivial eigensolutions
5.1. Numerical method

The fundamental problem (3.30)–(3.34) and (3.41) is integrated using a finite-
difference scheme of second order and by applying a marching technique downstream
in X-direction, the main flow direction, starting from an initial velocity profile
reflecting the asymptotic flow behaviour of non-trivial eigensolutions far upstream
(cf. § 4.2).
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To this end, a new variable Ū : = U −Y is introduced, whereas V in the momentum
equation in X -direction is expressed by integration of the continuity equation (3.30),

V (X, Y ) = −
∫ Y

0

∂Ū

∂X
(X, Ȳ ) dȲ . (5.1)

With the mapping of Y on to the computational domain η ∈ [0, 1],

Y (η) = Ys

(
1

1 − αsη
− 1

1 + αsη

)
,

including the scaling parameters αs , Ys , the representation of the numerical grid in
the new coordinates (X, η) is introduced:

(Xi, ηj ) = (X0 + iΔXi, jΔη), i ∈ �0, j = 0, . . . , Nj ,

where the step size in X-direction, ΔXi , is adaptable and the step size in, η-direction
Δη = 1/Nj , is fixed. Here, X0 represents some initial value which is no loss of
generality because of the translation invariance of the eigensolutions. Specifically,
values αs = 0.75, Ys = 20.0 and αs =0.75, Ys = 10.0 have been adopted to obtain results
for n= 2, 3 in §§ 5.3, 5.4 and 5.5 and for n= 4 in §§ 5.6 and 5.7, respectively. The
derivatives in X-direction are resolved by means of a Crank–Nicholson discretization,
making use of the known/old velocity profile evaluated upstream at Xi−1 and the
unknown/new velocity profile downstream at the next grid point at Xi . For the
derivatives in η-direction central differences evaluated at the grid point ηj are used,
and for the numerical evaluation of integral (5.1) the trapezoidal rule is applied. The
matching condition (3.34) is implemented as

A = Ū (X, Ymax = Y (1)).

This is justified because of the exponential decay of Ū for Y � 1, which one infers
from the asymptotic representation of the stream function Ψ for Y � 1, ∀X (see
the discussion following (4.14)). The results of the numerical calculations presented
in §§ 5.3, 5.4 and 5.5 have been obtained by choosing the values Ymax =68.57 and
Ymax =34.29 in §§ 5.6 and 5.7. The number of grid points in η-direction Nj = 200.

In the rare cases in which separation occurs, the FLARE approximation (Reyhner &
Flügge 1968) has been applied, which yields reasonable good results as long as the
region of separated flow remains small (cf. Anderson, Tannehill & Pletcher 1997).

5.2. Calculation of material parameters for PP10

Because of the canonical form of the fundamental problem, its solutions are
independent of the specific physical values for the parameters governing the channel
geometry and working medium. However, it is instructive to choose a definitive
physical set-up for numerical experiments in order to verify that the proposed scalings
do indeed lead to sensible numerical values for the scaled material parameters, Γ−∞,
Λ−∞, N−∞ and Q, in case of realistic working media, inflow conditions and geometric
dimensions.

As an example medium for a possible candidate of a BZT fluid, PP10 (C13F22) has
been chosen. Guardone & Argrow (2005) commented on the expected thermal stability
of PP10 and presented more recent material properties, summarized in table 3, than
can found in the earlier publications (Cramer 1989, 1991). Another promising class
of media suitable for experimental usage are siloxanes (cf. Colonna et al. 2007).

The fundamental derivative is a secondary thermodynamic quantity; i.e. it cannot
be accessed by direct measurements, or in case of numerical calculations, partial
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Commercial Chemical M̃ θ̃c P̃c θ̃b

name formula (g mol−1) (K) (atm) Zc (K) c̃c
v,∞/R̃g m ω

PP10 C13F22 574 630.2 16.2 0.2859 467 78.37 0.5255 0.4833

Table 3. Experimental data for PP10 (Guardone & Argrow 2005): M̃ is the molecular weight,
P̃c the critical pressure, θ̃c the critical temperature, Zc the critical compressibility factor, θ̃b

the boiling temperature at 1 atm, c̃c
v,∞ the specific heat for dilute states (ρ → 0) at θ̃c , R̃g the

specific gas constant, m the exponent in (5.3) and ω the acentric factor.

derivatives of the thermodynamic state variables p̃ and ρ̃ have to be calculated for
isentropic flow conditions (cf. the definition of Γ in (1.1)). To this end, a functional
representation of the thermodynamical equation of state for PP10 has to be chosen.
Here, we use the Martin–Hou equation of state (Martin & Hou 1955), since it is
reasonably realistic in predicting regions of negative Γ using a small number of
experimental data and is applicable with acceptable numerical efforts. The Martin–
Hou equation of state is a thermal equation of state, i.e. an incomplete form of an
equation of state in the sense that it provides a function for p̃ = p̃(θ̃ , ρ̃) only, and
therefore, the thermodynamic characterization of the fluid under consideration has to
be completed by providing a caloric equation of state:

ẽ(θ̃ , ρ̃) = ẽr +

∫ θ̃

θ̃r

c̃v,∞(τ ) dτ +

∫ ρ̃

ρ̃r

(
θ̃
∂p̃

∂θ̃
(θ̃ , �) − p̃(θ̃ , �)

)
d

(
1

�

)
, (5.2)

(cf. Martin & Hou 1955; Guardone & Argrow 2005). Here ẽ denotes the specific inner
energy; the subscript r specifies some reference state; and the subscript ∞ indicates
that the quantity is evaluated for dilute states, i.e. ρ̃ → 0. Following Thompson &
Lambrakis (1973) the functional form of c̃v,∞(θ̃ ) in the neighbourhood of the critical
temperature is approximated by a power law

c̃v,∞ � c̃c
v,∞

(
θ̃

θ̃r

)m

. (5.3)

The numerical implementation of the equations of state for the calculation of Γ

and its higher derivatives Λ and N then follows the study by Colonna & Silva (2003),
which moreover gives a very comprehensive selection of various thermodynamic
expressions applicable for the calculation of secondary thermodynamic quantities.

The dynamic viscosity has been calculated using the method of Chung et al. (1988)
for non-polar fluids. The data used are listed in table 3. The method itself as well
as the used data have to be taken with caution (cf. Kluwick 1994) in case of dense
gases. However, the main purpose here simply is to provide numeric values of realistic
magnitude.

Finally, one has to make assumptions on the position of the interaction region in
the channel. For the numerical results presented in the following sections we assume
that the interaction region is located at L̃0 = 1 m from the channel entry.

The properties R0, μw and U ′
0(0) of the oncoming undisturbed boundary layer

needed in the affine transformation (3.24)–(3.26) and in (3.40) are obtained by
considering the compressible boundary-layer equations over a semi-infinite flat plate
in the limit of dense gases with relatively large specific heats, R̃g/c̃v → 0. Kluwick
(1994) has shown that in the case of a plane uniform flow past a semi-infinite
adiabatic flat plate the temperature field and consequently the density field turn out
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ũ0 μ̃0

p0/pc ρc/ρ0 θ0/θc (m s−1) (Pa s) K Γ0 Λ0 N0 Re

§ 5.3 1.0268 1.240 1.00490 28.1 3.67 × 10−5 −1 1.00 – – 3.88 × 108

§ 5.4 0.949 1.710 0.997 35.5 3.00 × 10−5 −1 −0.115 – – 4.36 × 108

§ 5.5 0.914 1.917 0.994 40.2 2.80 × 10−5 −1 −0.0512 −0.918 – 4.71 × 108

§ 5.6 0.942 1.850 1.00023 40.1 2.87 × 10−5 −1 0.0134 −0.455 6.48 4.75 × 108

§ 5.7 0.945 1.84 1.00042 39.8 2.88 × 10−5 −1 0.0110 −0.407 6.90 4.72 × 108

ε Δx δl δm Δ(H )u Γ−∞ Λ−∞ N−∞ Q1

§ 5.3 0.166 0.00455 8.42 × 10−6 5.08 × 10−5 0.0112 1.00 – – 4.26
§ 5.4 0.133 0.0235 2.014 × 10−5 1.52 × 10−4 0.0645 −1.00 – – 24.9
§ 5.5 0.215 0.00997 9.93 × 10−6 4.61 × 10−5 0.0999 −1.00 −0.375 – 4.48
§ 5.6 0.264 0.0184 1.21 × 10−5 4.59 × 10−5 0.514 −1.00 −0.434 0.0761 7.08
§ 5.7 0.264 0.0184 1.21 × 10−5 4.59 × 10−5 0.514 −1.00 −0.563 0.141 6.44

Table 4. Selected inflow conditions at the channel entry and the resulting scaled parameters
for the interaction problem; Q1 = Q(H01 = 1).
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Figure 6. Reduced pressure versus reduced-density diagram for PP10 according to the
Martin–Hou equation of state. The symbols mark the pressure and density at the channel
entry used in the numerical calculations. The symbols are as follows: �, example 1, § 5.3; +,
example 2, § 5.4; �, example 3, § 5.5; �, example 4, § 5.6; �, example 5, § 5.7. Furthermore, n
indicates the nonlinearity in the pressure to be considered in the interaction law.

to be almost constant in the whole boundary layer, reflecting the fact that for fluids
with relatively large specific heats isentropic changes of the thermodynamic state only
lead to correspondingly small changes of the temperature (Kluwick 2004). Therefore,
R0 = 1 and μw = 1, and the boundary-layer flow is described by the well-known Blasius
similarity solution with U ′

0 = 0.332 (cf. Kluwick 1994).
The pressure-versus-density diagram in figure 6 shows the various pressure–density

pairs at the channel entry, used for the numerical calculations in the following sections,
and table 4 summarizes the inflow conditions and the numerical values of the scaled
parameters.
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Figure 7. (a) Plot of the mass flux density G[2] for quadratic nonlinearity in the pressure and

Rayleigh line connecting the pressure before and after the shock, P b and P a . (b) Plot of the
perturbation of the pressure, displacement thickness and wall shear τw for Q = 1, S−∞ = 0.

5.3. Compression pseudo-shock

Here we summarize the numerical results for internal profiles of compression shocks
(cf. table 4 and figure 6 for the selected inflow conditions and scaled quantities).
In figure 7(a) the resulting negative mass flux density perturbation G[2] versus the
pressure P is shown. As stated in Theorem 3.1, the values of the pressure before
and after the shock, P b and P a , are connected by the Rayleigh line CR . The arrow
indicates the transition from supersonic flow to subsonic flow as required by the
admissibility criterion. Sonic flow conditions indicated by the symbol � are obtained
at P =1, where G[2] exhibits an extremum. The shock discontinuity in the pressure
predicted by purely inviscid theory is sketched in figure 7(b), indicated by the dashed
lines. The shock discontinuity resolves into a smooth transition from supersonic
flow to subsonic flow the moment the interacting boundary layers at the channel
walls are considered (cf. the pressure, displacement thickness and wall shear stress
distribution τw in figure 7). Figure 7 immediately suggests a physical interpretation
of the shock regularization mechanism. Assume the distribution of the displacement
thickness −A to be a given function of X; then the interaction law (3.41) would
describe the inviscid flow of dense gases through a nozzle of variable throat area
(cf. § 3.3). However, in contrast with a nozzle of fixed geometry the flow in the
boundary layers adjacent to the solid walls and thus −A has the possibility to
adapt to the local pressure acting in the interaction region. Since the pressure in a
compressive pseudo-shock is increasing monotonously, dP/dX � 0, the flow passing
through the upper deck is decelerated throughout the interaction region (cf. (3.21)).
This is brought about by a reduction of the effective throat area, i.e. by an increase
of the disturbance of the displacement thickness, d(−A)/dX > 0, in the part of the
upper deck where the flow is supersonic. A smooth transition of the upper-deck
flow through the sonic state characterized by P =1 can only be effected if at the
same time the effective throat exhibits an extremum, i.e. d(−A)/dX = 0 (see figure 7).
After the sonic state has been transversed the upper-deck flow is subsonic, and a
further deceleration is achieved by a successive decrease of d(−A)/dX < 0. On the
other hand, the displacement effect characterized by −A originates from the lower
deck reacting to the acting induced pressure gradient. Because of the small velocities
close to the walls the flow in the lower deck behaves in an incompressible manner,
and consequently, the reduction of the effective throat area for the upper-deck flow,
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Figure 8. Plot of the pressure P and displacement thickness −A for Q =1, S−∞ = 0 and
comparison of the asymptotic behaviour far downstream X � 1 (cf. (4.20) and (4.21)).

corresponding to d(−A)/dX > 0, is brought about by a deceleration of the lower-deck
flow and the increase, i.e. d(−A)/dX < 0, by an acceleration. To be more specific, from
(3.34) we observe dU (X, Y → ∞)/dX = dA(X)/dX from which follows the presented
interpretation of the lower-deck flow reaction. Finally, the undisturbed flow profile
is reached again far downstream. In other words, the viscous boundary layers are
forming a ‘viscous’ Laval nozzle as they adapt to and at the same time interact with the
inviscid channel core flow. By reducing or expanding the effective throat area which
the upper-deck flow feels, they ensure a smooth transition of the flow from supersonic
to subsonic conditions and thereby regularize a possible shock discontinuity in the
inviscid upper-deck flow.

In figure 8 the numerical results for an internal-shock profile are compared with
the analytical results for the asymptotic far-downstream behaviour obtained in § 4.3.
To this end, (4.20) is fitted to the numerical results, delivering the numerical value for
C2K1. In the next step the coefficient in (4.21) can be calculated. Good agreement is
observed.

Figure 9, on the other hand, shows the influence of the parameter Q entering
the interaction law on the distribution of the pressure, displacement thickness and
wall shear stress. By reducing Q, i.e. by reducing the strength of the regularizing
effect of viscous–inviscid interaction, the pressure profile more and more seems to
approach the discontinuous solution of a shock, again depicted by the dashed lines.
However, this forces an increasingly stronger reaction of the lower-deck flow as is
revealed by inspecting the plot of the displacement thickness in figure 9. Because of
the unfavourable effect of an adverse pressure gradient acting in a compressive shock
profile on the boundary-layer flow the minimum of the wall shear stress decreases
with the increasing steepness of the pressure profile. This finally causes the formation
of local separated flow regions as evidenced by the results for the smallest value of
Q =0.2 included in figure 9.

5.4. Rarefaction pseudo-shock

As a second numerical example the internal profile of a rarefaction shock which is
expected to exist in case of Γ < 0 is considered in this section (cf. table 4 and figure 6
for the selected inflow conditions).

In figure 10(a) the negative perturbation of the mass flux density G[2] versus the
pressure P is shown, which is strictly concave in the case of negative nonlinearity.
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Figure 9. Distributions of the pressure, displacement thickness and wall shear stress in
an internal-shock profile connecting P b and P a for various values of Q and S−∞ =0;
Q =0.2, 0.3, . . . , 1.0.

Application of the shock admissibility criteria in Theorem 3.1 indicates that a
rarefaction shock is the admissible type of shock for this flow configuration, as it leads
to a transition from supersonic to subsonic flow conditions. (It is noteworthy that even
though the core-region flow is accelerated because of dP/dX < 0 a net decrease of the
local Mach number is achieved, as the increase of the flow velocity is overcompensated
by the increase of the local speed of sound if Γ < 1; cf. Thompson 1971.) As before,
the pressure discontinuity occurring in the case of inviscid flows is indicated by the
dashed lines. Again, the shock discontinuity resolves into a smooth internal-shock
profile if the interacting boundary layers at the walls are taken into account.

The influence of the parameter Q on the internal profile is depicted in figure 11.
Most important of all, it illustrates the favourable effect a positive pressure gradient
in an expansive pseudo-shock has on the boundary-layer flow. At the beginning of the
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Figure 10. (a) Plot of the mass flux density G[2] for quadratic nonlinearity in the pressure

and Rayleigh line connecting the pressure before and after the shock, P b and P a . (b) Plot of
the perturbation of the pressure, displacement thickness and wall shear for Q = 1, S−∞ = 0.

interaction process, the lower-deck flow passing the interaction region is accelerated
rather than decelerated as in the classical compressive case treated in the previous
section. As soon as the sonic state has been transversed in the upper-deck flow regime
the lower-deck flow decelerates and approaches the undisturbed initial flow profile
in the limit X → ∞. Consequently, the distribution of the wall shear stress exhibits a
local maximum which increases with the increasing steepness of the pressure profile.
Also note that τw � 1 in the entire interaction region, so that the flow remains firmly
attached for all possible values of Q, quite in contrast with the case of compression
pseudo-shocks.

5.5. Sonic pseudo-shock

As the third example, the internal profile of a sonic rarefaction shock is considered (cf.
table 4 for the selected inflow conditions and scaled quantities and figure 6). A sonic
shock is only possible in the case of mixed nonlinearity, that is to say if Γ changes
sign in the considered flow regime, resulting in a non-convex flux function G[3] as is
in figure 12(a). The admissible rarefaction shock in the situation under consideration
results in a transition from a supersonic flow state to a sonic state, i.e. M = 1. As
before, the shock discontinuity in the pressure indicated by the dashed lines resolves
into a smooth internal-shock profile connecting P b = 0 and P a = −4. The algebraic
decay of the pressure far downstream in case of a shock terminating in a sonic state, i.e.
G′

[n](P
a) = 0, has been found to be even weaker than in the case of a shock terminating

at a subsonic state, i.e. G′
[n](P

a) = 0 (cf. § 4.3). The predicted weaker decay is confirmed
by figure 13 which shows the excellent agreement of the leading-order term of the
pressure distribution far downstream based on the analytical results (4.20) and (4.22)
with the numerical solution. This weaker algebraic decay results in an increased length
of the shock profile as can be seen by comparing e.g. figure 8 and figure 13.

Alternatively to a shock connecting supersonic flow upstream with sonic flow
downstream considered so far, a sonic shock can equally well connect sonic flow
upstream with subsonic flow downstream in accordance with the shock admissibility
criteria, Theorem 3.1, since the condition [M] < 0 is satisfied in the latter case just
as well. Evaluation of the exponent (4.6) governing the exponential growth of the
flow quantities far upstream (4.1) results in κ = 0 because of G′

[3](P
b) = 0, meaning



500 A. Kluwick and G. Meyer

M >  1

M <  1

Q = 0.5

Q = 1.3

Q = 0.5

Q = 1.3

Q = 0.5

Q = 1.3

P

–A

τw

–2.0

0

–0.5

–1.0

–1.5

–1.0

0

–0.2

–0.4

–0.6

–0.8

1.0

3.0

3.5

2.0

2.5

1.5

X
0 50 100 150 200

0 50 100 150 200 250 300

0 50 100 150 200 250 300

Figure 11. Distributions of the pressure, displacement thickness and wall shear stress in
an internal-shock profile connecting P b and P a for various values of Q and S−∞ =0;
Q =0.5, 0.6, . . . , 1.3.

that Lighthill’s ansatz yields the trivial eigensolution in this case. On the other hand,
there always exists a non-trivial eigensolution for each supersonic flow state upstream,
no matter how close it is to the sonic flow state. Consequently, the internal-shock
profile of a sonic shock originating in a sonic flow can be seen as the limiting case
of internal-shock profiles originating in supersonic flow when Mb → 1+. This will be
exemplified in more detail in the next section dealing with the internal-shock profile
of a double-sonic shock.

5.6. Double-sonic pseudo-shock

The selected inflow conditions and scaled quantities used for the calculation of internal
profiles of a double-sonic shock are summed up in table 4 and figure 6.

Similar to the case of a simple sonic shock a double-sonic shock is only possible
in the case of mixed nonlinearity, if Γ changes its sign in the considered flow regime,
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Figure 13. Plot of the pressure P and the displacement thickness −A for Q = 1, S−∞ = 0 and
comparison of the asymptotic behaviour far downstream X � 1 predicted by (4.20) and (4.22).

resulting in a non-convex flux function (cf. figure 14a). Strictly speaking, a double-
sonic shock forms only if Γ changes sign twice. This, however, results in a mass flux
density G[n] which is a polynomial of fourth order in the pressure, i.e. the case n=4
in (3.36). Referring to figure 6, the double-sonic shock originates in a thermodynamic
region in the pressure-versus-density diagram close to the point at which an isentrope
touches the transition line Γ = 0. Since the second derivative of Γ , i.e. N , has to be
positive in the region of interest (cf. Kluwick 1993), the flux function G[4] always
takes on a shape similar to the example depicted in figure 14 such that G[4](P ) → +∞
for P → ± ∞ (see (3.36)). The internal-shock profile of a double-sonic shock is the
limiting case of internal-shock profiles originating in supersonic flow when Mb → 1+

(cf. figure 14). As earlier, the pressure jump across a double-sonic shock is indicated
by the dashed lines in the plot of the pressure distribution in figure 14(b). The flow
conditions upstream of the interaction region are adjusted by varying the parameter
QS−∞ in the interaction law, thus shifting the Rayleigh lines from right to left by
a distance −QS−∞ from the origin (see figure 14a). The limiting case of a double-
sonic shock is then obtained for QS−∞ = QS−∞,max (see figure 14). Prescribing a
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Figure 14. (a) Plot of pressure P versus the mass flux density G[4]. The Rayleigh lines
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value QS−∞ = 0 is equivalent to changing the height of the channel and the inflow
conditions according to (3.42).

Considering the various Rayleigh lines in figure 14 it is evident that the overall
shock strength increases while approaching the limiting double-sonic shock. On the
other hand, considering the plot of the internal pressure profiles, the length of
the corresponding internal-shock profiles, i.e. the region of significant variation of
the pressure, is increasing as well. This phenomenon of increasing shock thickness
for increasing shock strength already has been reported in a different context by
Cramer & Crickenberger (1991), who studied internal-shock profiles resulting from a
classical thermo-viscous regularization.

Moreover, an admissible double-sonic shock is bound to be a rarefaction shock in
accordance with the shock admissibility criteria for the inviscid case (Theorem 3.1).
This can be concluded from inspection of figure 14, taking into account the arguments
concerning the possible shapes of the flux function G[4] addressed at the beginning
of this section. A double-sonic shock has to connect two separate extrema of G[4],
and since G[4] → ∞ for P → ± ∞ because of N > 0, these two extrema have to be
minima. The remaining extremum of G[4] is a maximum and has to lie in between.
Let P 1

min >P 2
min characterize the two separate minima and Pmax the maximum. Then

G′
[4] < 0 for P ∈ {P 1

min, Pmax} and G′
[4] > 0 for P ∈ {Pmax, P

2
min}, and consequently, the

internal-shock profiles used to construct the limiting solution of a double-sonic shock
can correspond to rarefaction shocks only, and thus a double-sonic shock likewise
has to be a rarefaction shock.

5.7. Split pseudo-shock

As the fifth and last example we consider the internal profile of a split shock; for the
selected inflow conditions and scaled quantities, again consult table 4 and figure 6.
Similar to the case of a double-sonic shock Γ has to change its sign twice in the
considered flow regime, i.e. n= 4, resulting in a non-convex flux function which
is represented by a polynomial of fourth order in the pressure (figure 15a). The
Rayleigh line of the split shock is given by the dashed line which touches the flux
function G[4] in a sonic point at the distance QS−∞,max from the origin. As before,
the split shock has to be interpreted as the limiting case of classical Lax shocks for
QS−∞ → QS−∞,max . The flow in the upper-deck region has to pass through three sonic
sates (cf. figure 15), while the overall shock leads to a transition from supersonic
conditions to subsonic conditions. The three sonic states result in three extrema in
the distribution of the displacement thickness −A. The lower-deck flow generates
a viscous Laval nozzle which consists of two throats and one anti-throat in order
to allow a smooth acceleration of the upper-deck flow through the different Mach
number regimes. Taking a look at the calculated pressure distribution of internal-
shock profiles for various values of QS−∞ on the right-hand side in figure 15 reveals
that the phenomenon of shock splitting can already be anticipated from the pressure
profiles for values of QS−∞ <QS−∞,max . After the upper-deck flow has passed through
the first sonic state resulting in a passage from supersonic flow to subsonic flow, the
flow medium enters a plateau region while passing the second sonic state, as the
flow is accelerated back to supersonic conditions. Finally, the then-supersonic flow
passes the third sonic state, and the flow becomes subsonic again. The last transition
from supersonic conditions to subsonic conditions results in a second steepening of
the shock profile. This phenomenon of impending shock splitting becomes more and
more pronounced, successively separating the two regions of rapid pressure rise for
QS−∞ → QS−∞,max . From the existence of this limiting form of the internal-shock
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Figure 15. (a) Plot of pressure P versus the mass flux density G[4]. The Rayleigh lines are
shifted from right to left by varying QS−∞, successively approaching the limiting case of a split
shock for QS−∞,max indicated by the dashed Rayleigh line. Plots of the (b) induced pressure,
(c) displacement thickness and (d ) wall shear stress for Q = 1, QS−∞ = 0.00, 0.05, . . . , 0.40. In
(b) a split shock for the inviscid case indicated by the dashed lines is included for illustration.

profile one infers that indeed two shocks forming a split shock may coexist next
to each other in purely inviscid flow. Interestingly enough, similar to the case of a
double-sonic shock discussed before, this phenomenon of impending shock splitting
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has also been observed by Cramer & Crickenberger (1991), for internal-shock profiles
resulting from a thermo-viscous regularization.

6. Summary and conclusions
In this treatise viscous–inviscid interactions in internal, transonic, single-phase

and two-dimensional high-Reynolds-numbers flows through channels that are so
narrow that the interacting core-region flow becomes one-dimensional to the leading
order are shown to be described consistently by a triple-deck problem (cf. § 3).
The interacting core region is hereby represented by a single upper deck which is
shared by the two interacting boundary layers at the lower and upper channel walls.
The resulting model equations then are applied to study the shock–boundary-layer
interaction in a narrow channel of constant cross-section. It is demonstrated that a
shock discontinuity is smoothed out by the interaction process, ultimately resulting
in an internal-shock profile. Furthermore, internal shock profiles and pseudo-shocks
are found to be identical in the context considered here. Both are represented by
non-trivial eigensolutions to the interaction problem.

The mechanism of viscous–inviscid shock regularization which arises in the context
of internal flows as considered here is governed by completely different underlying
physics than the well-known mechanism leading to the Taylor shock profile known e.g.
from studies of external flows. In the latter case the effects of viscous normal stresses
and heat conduction are the essential ingredients of the regularization process which,
however, are negligible in the type of internal flows considered here, where boundary
layers generated because of the action of viscous shear stresses form a ‘viscous’ nozzle
adapting to and at the same time interacting with the inviscid channel core flow and
thus allow a smooth passage of the inviscid core-region flow through the interaction
region. This mechanism is thoroughly discussed in the study of internal-shock profiles
of various weak anomalous shocks forms possible in fluids of mixed nonlinearity
(BZT fluids), i.e. rarefaction, sonic, double-sonic and split shocks (cf. §§ 4 and 5). It is
found that possible internal-shock profiles are consistent with the shock admissibility
criterion formulated for the inviscid case (cf. Kluwick 1993). Interestingly enough, the
internal-shock profiles because of viscous–inviscid interactions share common features
with those obtained by a classical thermo-viscous regularization, e.g. impending shock
splitting.

The calculation of the characteristic length scales involved in the distinguished
limit for a particular example BZT fluid, PP10 (cf. table 4), illustrates that such flow
phenomena as discussed here can be encountered in internal flows of a BZT fluid in
future engineering practice. However, besides the interesting features of BZT fluids,
like the fact that the boundary-layer flow remains firmly attached to the wall under the
influence of a rarefaction shock and thus a source of severe flow losses encountered
in technical applications such as organic Rankine cycle processes could be avoided,
an experimental proof of their existence is still lacking so far. The set-up described
here could be an alternative to shock tubes currently in use to experimentally prove
the existence of rarefaction shocks. The distinguishing advantages over a shock-
tube experiment would be that the shock position is stationary and that no other
wave phenomena would have to be accounted for. A disadvantage, however, may be
the need to guarantee laminar boundary-layer flow up to very high Reynolds numbers
and that the actual position at which a weak normal shock forms in a channel of
constant cross-section is very sensible to small perturbations. Therefore, a theory of
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viscous–inviscid interactions in narrow nozzles is of interest, which will be the focus
of an forthcoming publication by the authors.

It shall be pointed out that the presented theory has been obtained by means of
an asymptotic analysis, and consequently the quality of such an asymptotic theory
relies on the smallness of an expansion parameter. What can be considered to be
sufficiently small for a particular problem can only be accessed by experiments or by
computational fluid dynamics simulation of the full problem in the end. However, we
emphasize that asymptotic analysis is a means to isolate relevant physical effects, and
the application of triple-deck theory to other important problems in boundary-layer
theory has proven to be extremely successful in the past.

This work has been financed by the Austrian Science Fund in the framework of
the WK Differential Equations.
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